A gynogenetic screen to isolate naturally occurring recessive mutations in Xenopus tropicalis
نویسندگان
چکیده
In the rapidly developing, diploid amphibian Xenopus tropicalis, genetics can be married to the already powerful tools of the amphibian system to overcome a disability that has hampered Xenopus laevis as a model organism: the difficulties inherent in conducting genetic analyses in a tetraploid organism with a longer generation time. We describe here a gynogenetic screen to uncover naturally occurring recessive mutations in wild X. tropicalis populations, a procedure that is both faster and easier than conventional genetic screens traditionally employed in model organisms to dissect early developmental pathways. During the first round of our screen, gynogenetic diploids from over 160 females comprising four different wild-caught populations were examined. Forty-two potential mutant phenotypes were isolated during this round of gynogenesis. From this group, we describe 10 lines that have genetically heritable recessive mutations. A wide range of developmental defects were obtained in this screen, encompassing effects limited to individual organs as well phenotypes characterized by more global changes in tadpole body morphology. The frequency of recessive mutations detected in our screen appears lower than that seen in other vertebrate genetic screens, but given constraints on the screening procedure used here, is likely to be consistent with rates seen in other animals, and clearly illustrates how wild-caught animals can be a productive source of developmental mutations for experimental study. The development of genetic strategies for the Xenopus system, together with new genomic resources, existing technologies for transgenesis, and other means for manipulating gene expression, as well as the power of performing embryonic manipulations, will provide an impressive set of tools for resolving complex cell and developmental phenomena in the future.
منابع مشابه
Genetic Screens for Mutations Affecting Development of Xenopus tropicalis
We present here the results of forward and reverse genetic screens for chemically-induced mutations in Xenopus tropicalis. In our forward genetic screen, we have uncovered 77 candidate phenotypes in diverse organogenesis and differentiation processes. Using a gynogenetic screen design, which minimizes time and husbandry space expenditures, we find that if a phenotype is detected in the gynogene...
متن کاملA Comparative Survey of the Frequency and Distribution of Polymorphism in the Genome of Xenopus tropicalis
Naturally occurring DNA sequence variation within a species underlies evolutionary adaptation and can give rise to phenotypic changes that provide novel insight into biological questions. This variation exists in laboratory populations just as in wild populations and, in addition to being a source of useful alleles for genetic studies, can impact efforts to identify induced mutations in sequenc...
متن کاملIdentification of mutants in inbred Xenopus tropicalis
Xenopus tropicalis offers the potential for genetic analysis in an amphibian. In order to take advantage of this potential, we have been inbreeding strains of frogs for future mutagenesis. While inbreeding a population of Nigerian frogs, we identified three mutations in the genetic background of this strain. These mutations are all recessive embryonic lethals. We show that multigenerational mut...
متن کاملXenopus, the next generation: X. tropicalis genetics and genomics.
A small, fast-breeding, diploid relative of the frog Xenopus laevis, Xenopus tropicalis, has recently been adopted for research in developmental genetics and functional genomics. X. tropicalis shares advantages of X. laevis as a classic embryologic system, but its simpler genome and shorter generation time make it more convenient for multigenerational genetic, genomic, and transgenic approaches...
متن کاملDiploid gynogenesis in Xenopus laevis and the localization with respect to the centromere of the gene for periodic albinism
Diploid gynogenetic Xenopus laevis were obtained by inseminating the eggs with u.v. irradiated spermatozoa, and treating them with hydrostatic pressure to inhibit the expulsion of the second polar body. A u.v. dose of 3000 ergs/mm genetically inactivates the spermatozoa without loss of their ability to activate egg development. The use of a genetic marker on very large samples of eggs made it p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mechanisms of Development
دوره 122 شماره
صفحات -
تاریخ انتشار 2005